
IC Chipz
sdmay20-40

https://sdmay20-40.sd.ece.iastate.edu/

Team

Nicholas Dykhuizen - Integration Developer

Justin Elsbernd - Integration Developer

Joshua Heiser - Embedded Developer

Andrew Kicklighter - Mobile Developer

Paul Kiel - Embedded Developer

Alexander Weakland - Wildcard Developer

Advisor/Client - Dr. Henry Duwe

https://sdmay20-40.sd.ece.iastate.edu/

Problem Statement

In today’s world, there is becoming a shortage of reliable skeet shooting judges. If

this problem continues to be ignored, the sport of skeet shooting will eventually be

out of options for judges.

The goal of IC Chipz is to solve this issue, do do this the team will implement an

automatic scoring systems to fairly judge skeet shooting events using a NVIDIA

Jetson board with an E-Con Systems camera, a mobile application, and machine

vision.

Key Words and Technologies

1) Darknet: Convolutional Neural Network for training object detection models

2) OpenCV: A technology to integrate into recording devices as well as image

manipulation

3) YOLO (You Only Look Once): Object Detection algorithm used to determining

a given frame’s result

4) Nvidia Jetson: Hardware platform used for field scoring

5) Xamarin Forms: Framework to develop mobile applications for both iOS and

Android

Conceptual Sketch
We envision IC Chipz to have three primary stages:

1) Mobile Application

Handles user interaction with a round; provides front end experience

2) Nvidia Board Integration

Creates a link between the mobile application and the board’s camera and neural network

3) Machine Vision

Underlying neural network for detecting hits and misses from a video source

Functional Decomposition
ICChipz

Mobile Application Embedded Application

Training ModeScoring Mode
Testing ModeScoring Mode

Challenge ScoreAutomatically Score
Rounds

Training Mode

Computer Vision Video/Photo
Storage

Result

Milestones/Requirements Completed

Machine Vision

● Trained machine vision

model

● 90+% accuracy of vision

model

Nvidia Board Integration

● Data pipeline between

video recording device and

neural network

● Automate data collection

and identification

● Ability to train, test, and

score data

Mobile Application

● Connection to board via

WiFi or Bluetooth

● Scoring page for in field

scoring

● Front end for automated

data collection and

identification

Potential Risks/Risk Mitigation

● Weather
○ Team gathers data at the skeet shooting range, if it is

raining/snowing then the team cannot go to the range to gather
data to train the model

○ Mitigation: The team that worked on the project prior has
datasets from going to the range, use these to train the model if
unable to go to the range

● Safety Hazards
○ Going to a skeet shooting range to gather data by recording live

shots is dangerous due to the firearms
○ Mitigation: The team will only be at the shotgun range with

direct supervision and will follow all rules set forth at the range.

Online Instruction

While we were still able to meet our requirements, due to online Instruction there

were a few parts of are project we were not able to fully explore including:

● Gathering more data from the skeet range for our testing and training models

to improve the overall accuracy.

● Testing of the E-Con Systems camera and deciding if we need to implement a

second camera or add a new lens to improve video quality and FPS.

● Testing the camera’s efficiency in different environmental conditions.

Integration Team
Board Application

● C++ based application

● Integrates with mobile application via wireless technologies

○ Bluetooth

○ WiFi

● Integrates with Darknet and OpenCV

● Application between board’s features and mobile application

○ Handles data transfer of images, scoring, and photos

○ Records, stores, and classifies video footage for machine vision

model

○ Sends and receives commands from mobile application

Modes

● Training - Gather video footage, recording

from user input, and classifying the footage

as hit, miss, or no bird

● Testing - Gather video footage, and match

user marked hit, miss, or no bird, against the

machine vision model

● Scoring - Automated data scoring by

detecting targets in frame sending the

results over the network to the mobile

application

Design

● Designed with multi threading for footage

recording, user input, and network

communication

● Singleton design pattern with global

resources accessible to all threads.

● Loads machine vision network from config

file and locks camera on application boot

for increased efficiency

Integration Team
Board Application Design and Modes

Embedded Team
Why choose Computer Vision/Neural
Networks?

● From the original goals laid out by our client, we needed the following things

○ A system that can find an object

○ A system to keep track of the status of the object

○ A way to to score based on the status of the object

● This is usually done a couple of ways

● We felt that object detection/Neural networks is the easiest way to solve

these issues

○ Object Detection allows us to find objects in frames

○ The Neural Network is used to help assist in the status of the object

○ These two working in tandem will allow us to automate this process as

our Embedded board can do this work while the camera is

recording/operating.

Why Darknet/YOLO?

● We want object detection

● Algorithm that is easily trainable

● Time to train (and run) is much faster than

other respected algorithms

Coco Dataset
The COCO dataset is a standard image data set for
benchmarking computer vision applications and models
for speed and precision

mAP - mean average precision

Chart from: https://pjreddie.com/darknet/yolo/
Data in chart provided by multiple studies at Cornell

https://pjreddie.com/darknet/yolo/

Model testing

● Mutually exclusive test and train sets.

● Compare known with cv model output.

● Isolate and save filenames of images that are read incorrectly.

● View results in a confusion matrix format.

● Found that nothing less than 7000 training iterations gave accurate enough results.

● 7000-10000 iterations shows small increases but 83-88% model accuracy is viable for

our application

● 14000 seemed to overtrain model and it tested poorly on mutually exclusive test set

Iteration amount seen above Graph

1000 4000

100008000

BLUE = Correct Prediction

ORANGE = Incorrect Prediction

14000 (overtrained)

Model Accuracy
(at 10000 Iterations)

Computer Vision to Score Frames

● Written in C++

● Loads labels and vision data file from config file

● Receives video frames from OpenCV integrated camera

● Get a frame and pass it into Darknet

○ Darknet will return the number of objects detected that meet our labels in a

frame

● Go through each object that Darknet returns and check their status

○ If an object is detected is hit for multiple frames, we know that the pigeon has

been hit

○ If a object was detected earlier and is now no longer detected, we know that

the pigeon has been missed

○ If there was never a pigeon in the frame, then return no pigeon

Mobile Design

● Platforms
○ Xamarin Forms through Visual

Studios
○ Allows for cross platform

development for iOS and Android
● Design

○ Minimize platform specific code
○ Split the code into 3 parts: Classes,

Pages, and View Models
■ Classes are general code to be

used throughout the app (i.e.
code to connect to WiFi or
define a shooter)

○ Pages deal with the UI design
○ View Models are the backend code

for each page and handle things such
as scoring rounds

Mobile Design

Used to score a
round with the
board once
connected

Used for scoring a
round if you do not
have the board

Used for gathering data
for the testing set, will not
be in the production app

- Mark shot as a hit or a
miss

- Used for training the
device

- Production
application will
automatically
mark the skeet as
alive or dead

- View the
shooter’s
scorecard

- Can also view
every other
shooter’s
scorecard who is
currently in the
round

- Displays the

current round, the

current shooter

and their score

- Allows user

to save their

round with

all its data,

this can be

revisited at

any time

UI When not connected to

Mobile Design

- Once connected
to the board the
user will have the
option to
Challenge the
ruling of the
device

- Will play the video
the device took
○ Official

reviews the
video and
marks the
shot as alive
or dead

- Start recording video
on the device

- Changes to stop when
pressed

UI when connected to board Save State

- Load saved session
from its name

- Ability to delete a
session by its name
if it is no longer
needed

Testing
● Mobile Team

○ Made sure that all functionalities required for the mobile app works as expected

○ Used Apple’s Test Flight so that other team members were able to utilize the

application we reported bugs/crashes to the mobile team as they occurred

● Integration Team

○ Made sure that the mobile app and the embedded board can communicate as

needed

○ Made sure that file transfers are successful

○ Made sure that file storage is done correctly based on inputs

● Embedded Team

○ Made sure that the scoring algorithm works

○ Created proper test and training sets

○ Added the training sets to Darknet to increase its accuracy

○ Used Python scripts to verify the accuracy meets the requirements set out at the

beginning of the semester (90+ percent)

Engineering Standards and Design Practices

● IEEE 1012-2016 - Standard for System, Software, and Hardware Verification and

Validation

● IEEE 1220-2005 - Standard for Application and Management of the Systems Engineering

Process

● IEEE 829 - Documentation Standards

Conclusion
● What we have…

○ A working model that will be able score with 90%+ accuracy during a

night-time game.

○ The mobile application and portable board device have a data collection mode

allowing them to add additional data points to a data sets

○ A mobile application that communicates back and forth with the device

○ Mobile application has a score review process to allow invalid scores to be

challenged and reversed if necessary as well a save state functionally

○ Post round statistics information that is displayed after each round

● Our plan for the future...

○ Work will likely continue next year with a new group to continue increasing

vision model accuracy, allowing it work under more conditions like daylight

and lens flare, adding features, and maintaining the app on both iOS and

Android.

Contributions

Andrew Kicklighter Josh Heiser Nick Dykhuizen

- Mobile Application
Development

- Bug Testing
- Integration between

application and board

- Wrote test scripts for
DarkNet model testing

- Integration of DarkNet API
in C++

- Object detection

- Integration design
- Network communication
- Pipeline Implementation
- OpenCV Integration
- DarkNet API in C++

Paul Kiel Justin Elsbernd Alex Weakland

- DarkNet
Development/Implementati
on

- Object Detection
- Model Generation

- On-Board Integration
- Pipeline Implementation
- Integration of DarkNet in

C++

- Analyzed Training and
Testing data for vision model

- Bug Testing
- Assisted teams with various

tasks and bugs (wildcard)

Special Thanks

Thank you to Dr. Henry Duwe for his guidance with the IC Chipz project.

Demonstration

A short demonstration showing how the Embedded Board would pass data into

Darknet and the algorithm that scores/places the results in the correct directory on

the Embedded System.

Questions?

